# Silverman–Toeplitz theorem

In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a matrix transformation of a convergent sequence which preserves the limit.

An infinite matrix $(a_{i,j})_{i,j\in \mathbb {N} }$ with complex-valued entries defines a regular summability method if and only if it satisfies all of the following properties:

{\begin{aligned}&\lim _{i\to \infty }a_{i,j}=0\quad j\in \mathbb {N} &&{\text{(Every column sequence converges to 0.)}}\\[3pt]&\lim _{i\to \infty }\sum _{j=0}^{\infty }a_{i,j}=1&&{\text{(The row sums converge to 1.)}}\\[3pt]&\sup _{i}\sum _{j=0}^{\infty }\vert a_{i,j}\vert <\infty &&{\text{(The absolute row sums are bounded.)}}\end{aligned}} An example is Cesaro summation, a matrix summability method with

$a_{mn}={\begin{cases}{\frac {1}{m}}&n\leq m\\0&n>m\end{cases}}={\begin{pmatrix}1&0&0&0&0&\cdots \\{\frac {1}{2}}&{\frac {1}{2}}&0&0&0&\cdots \\{\frac {1}{3}}&{\frac {1}{3}}&{\frac {1}{3}}&0&0&\cdots \\{\frac {1}{4}}&{\frac {1}{4}}&{\frac {1}{4}}&{\frac {1}{4}}&0&\cdots \\{\frac {1}{5}}&{\frac {1}{5}}&{\frac {1}{5}}&{\frac {1}{5}}&{\frac {1}{5}}&\cdots \\\vdots &\vdots &\vdots &\vdots &\vdots &\ddots \\\end{pmatrix}},$ 